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Abstract

The fully developed laminar mixed convection in a vertical circular duct is studied analytically, with reference to

non-axisymmetric boundary conditions such that the fluid temperature does not change along the axial direction. The

Boussinesq approximation is applied by taking the average temperature in a duct section as the reference fluid tem-

perature. The dimensionless momentum and energy balance equations are solved by employing Fourier series ex-

pansions of the temperature and the velocity fields. The solution shows that the temperature field is not influenced by

the velocity distribution and that the Fanning friction factor is not affected by buoyancy. On the other hand, the ve-

locity field is strongly influenced by the buoyancy forces and may display flow reversal phenomena. Two special cases

are studied in detail: a duct with a sinusoidal wall temperature distribution; a duct subjected to an external convection

heat transfer with two environments having different reference temperatures.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The laminar mixed convection in vertical or inclined

circular ducts has been studied by several authors. A

wide description of the literature on this subject can be

found, for instance, in [1,2]. Morton [3] presents an

analytical solution of fully developed mixed convection

in a vertical tube in the case of laminar flow with a

uniform wall heat flux. Lawrence and Chato [4] inves-

tigate numerically the combined forced and free flow in

the entrance region of a vertical tube with either a uni-

form wall heat flux or a uniform temperature. A nu-

merical and experimental study of mixed convection

developing flow in an isothermal vertical tube is pre-

sented by Zeldin and Schmidt [5]. They refer to upward

flow and find a heat transfer enhancement for an inlet
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temperature higher than the wall temperature. An ex-

tension of the numerical study presented in Ref. [5] to

include the case of inclined tubes can be found in Ref.

[6]. Conditions for the onset of flow reversal in devel-

oping mixed convection flow of air in a vertical tube

have been determined numerically by Moutsoglou and

Kwon [7] for either a uniform wall heat flux or a uniform

wall temperature. Buoyancy induced secondary flow in

inclined tubes has been investigated numerically by Orfi

et al. [8] in the special case of fully developed regime for

either isothermal or uniformly heated wall. These au-

thors show that, for given values of the Grashof number

and the Prandtl number, there exists an inclination angle

which maximizes the average Nusselt number and pro-

vide correlations for this quantity with different tube

inclinations. In Refs. [9,10], analytical studies of the ef-

fect of viscous dissipation on mixed convection flow in a

vertical circular tube are studied by employing a per-

turbation method.

Most papers on combined forced and free flow in

vertical or inclined circular ducts refer to axisymmetric

thermal boundary conditions. As is well known, there
ed.
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Nomenclature

a0ðrÞ, anðrÞ, bnðrÞ Fourier series coefficients em-

ployed in Eq. (16)

Að#Þ, Bð#Þ functions defined by Eqs. (58) and (59)

An, Bn integration constants employed in Eqs. (19)

and (22)

Bi Biot number, defined by Eq. (78)

c0ðrÞ, cnðrÞ, hnðrÞ Fourier series coefficients employed

in Eq. (27)

f Fanning friction factor, defined by Eq. (45)

F ð#Þ dimensionless function defined by Eq. (75)

g gravitational acceleration

g magnitude of the gravitational acceleration

G arbitrary function defined on a duct section

Gr Grashof number, defined in Eq. (8)

ðGr=ReÞFR threshold value of Gr=Re for the onset of
flow reversal

ðGr=ReÞsing threshold value of Gr=Re for the occur-
rence of singularities of Nu

he external convection coefficient

h# local convection coefficient

m, n, q non-negative integers

Nu# local Nusselt number defined by Eq. (50)

p pressure

P ¼ p þ .0gX , difference between the pressure

and the hydrostatic pressure

qw#
local heat flux per unit area at the wall

r dimensionless radial coordinate defined in

Eq. (8)

R radial coordinate

R radial unit vector

R0 radius of the channel

Re Reynolds number, defined in Eq. (8)

t dimensionless temperature, defined in Eq.

(8)

tb dimensionless bulk temperature, defined by

Eq. (52)

T temperature

Tb bulk temperature of the fluid, defined by

Eq. (51)

Tf ð#Þ environment temperature

Tm mean environment temperature

T0 average fluid temperature, defined by Eq. (2)

T1, T2 reference environment temperatures

Tw mean wall temperature

u dimensionless velocity, defined in Eq. (8)

uð1Þ, uð2Þ dimensionless functions defined by Eqs. (42)

and (43)

u� modified dimensionless velocity, defined by

Eq. (44)

U fluid velocity

U X -component of the fluid velocity

U0 average velocity in a channel section, de-

fined by Eq. (9)

X axial coordinate

Greek symbols

a thermal diffusivity

b volumetric coefficient of thermal expansion

d Kronecker�s delta
DT reference temperature difference

g dimensionless parameter defined in Eq. (62)

# angular coordinate

#sing value of # such that Nu# presents a singu-

larity

k thermal conductivity of the fluid

k dimensionless pressure drop, defined in

Eq. (8)

l dynamic viscosity

m kinematic viscosity

. mass density

.0 mass density for T ¼ T0
sw average wall shear stress, defined by Eq. (46)
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are several technical cases such that both the wall tem-

perature and the wall heat flux depend on the angular

coordinate. Non-axisymmetric thermal boundary con-

ditions have been studied, for instance, by Reynolds [11]

and, more recently, by Choi and Choi [12,13]. Reynolds

[11] obtains an analytical solution in the case of forced

convection in a circular tube such that the wall heat flux

undergoes a stepwise change along the angular direc-

tion, while it is kept uniform in the axial direction. Choi

and Choi [12,13] present a numerical investigation of

mixed convection in a horizontal tube such that the

upper half of the duct wall is insulated while the lower

half is subjected to a uniform heat flux.

In the present paper, the laminar mixed convection in

a vertical tube is studied with reference to thermal
boundary conditions such that the fluid temperature is

uniform along the axial direction and is a function of the

angular coordinate. The fully developed region is con-

sidered. The Boussinesq approximation is applied and

the average fluid temperature in a duct section is chosen

as the reference temperature. As it has been shown in

Ref. [14], this choice ensures the highest accuracy of the

linear relation between density and temperature. The

momentum and energy balance equations, written in a

dimensionless form, are solved by employing an ana-

lytical method based on Fourier series expansions of

both the temperature field and the velocity field with

respect to the angular coordinate. Two special cases are

discussed in detail. First, a circular duct with a sinu-

soidal wall temperature distribution is analyzed. Then,
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the case of a circular duct subjected to an external

convection heat transfer with two environments having

different reference temperatures is considered. This

thermal boundary condition includes that of a piecewise

uniform wall temperature as a limiting case, when the

convection coefficient tends to infinity.
2. Mathematical model

The steady and fully developed laminar flow of a

Newtonian fluid in a vertical circular duct with radius R0

is considered. A sketch of the duct and of the cylindrical

coordinate system ðR; #;X Þ is reported in Fig. 1. The

flow is assumed to be parallel, so that the only non-

vanishing component of the velocity vector U is U ,

along the X -direction. Moreover, the effect of viscous

dissipation is neglected.

The Boussinesq approximation is employed, so that

U is considered as a solenoidal field and, therefore,

oU=oX ¼ 0.

The equation of state is written in the linear form

. ¼ .0½1� bðT � T0Þ�; ð1Þ

where T0 is the average fluid temperature on a duct cross
section, namely
X

g

A A

R0

ϑ

R

Section  A-A

Fig. 1. Drawing of the vertical circular duct.
T0 ¼
1

pR2
0

Z 2p

0

d#

Z R0

0

dRRT ðR; #;X Þ: ð2Þ

The momentum balance equations along X , R and # can

be written as

0 ¼ � oP
oX

þ .0gbðT � T0Þ þ l
o2U
oR2

�
þ 1

R
oU
oR

þ 1

R2

o2U
o#2

�
;

ð3Þ

0 ¼ � oP
oR

; ð4Þ

0 ¼ � 1

R
oP
o#

; ð5Þ

where P ¼ p þ .0gX is the difference between the pres-

sure and the hydrostatic pressure. The thermal bound-

ary conditions are such that there is no net fluid heating

in the axial direction, i.e. oT=oX ¼ 0. Obviously, in this

case, the reference temperature T0 is a constant. Eqs. (4)
and (5) ensure that P depends only on X .

If both sides of Eq. (3) are differentiated with respect

to X , one obtains

d2P
dX 2

¼ 0; ð6Þ

so that dP=dX is a constant.

Since the effect of viscous dissipation is neglected and

oT=oX ¼ 0, the energy balance equation is given by

o2T
oR2

þ 1

R
oT
oR

þ 1

R2

o2T
o#2

¼ 0: ð7Þ

Let us define the dimensionless quantities

t ¼ T � T0
DT

; u ¼ U
U0

; r ¼ R
R0

; k ¼ � 4R2
0

lU0

dP
dX

;

Re ¼ 2R0U0

m
; Gr ¼ 8gbDTR3

0

m2
; ð8Þ

where U0 is the average velocity in a duct section,

namely

U0 ¼
1

pR2
0

Z 2p

0

d#

Z R0

0

dRRUðR; #Þ: ð9Þ

Obviously, U0 is a constant. On account of Eq. (8),

Gr
Re

¼ 4gbDTR2
0

mU0

: ð10Þ

In the following, it will be assumed that DT is a positive

quantity, so that positive values of Gr=Re imply positive
values of U0 (upward flow), while negative values of

Gr=Re imply negative values of U0 (downward flow).

Eqs. (3) and (7) can be rewritten as

Gr
Re

t þ k þ 4
o2u
or2

�
þ 1

r
ou
or

þ 1

r2
o2u
o#2

�
¼ 0; ð11Þ
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o2t
or2

þ 1

r
ot
or

þ 1

r2
o2t
o#2

¼ 0: ð12Þ

The no slip condition at the wall implies that

uð1; #Þ ¼ 0: ð13Þ

In addition, both the dimensionless velocity and the

dimensionless temperature on the duct axis must be fi-

nite. Finally, Eqs. (2) and (9) imply the following con-

straints on the functions tðr; #Þ and uðr; #Þ:Z 2p

0

d#

Z 1

0

dr rt ¼ 0; ð14Þ

Z 2p

0

d#

Z 1

0

dr ru ¼ p: ð15Þ
3. Analytical solution

Since the function tðr; #Þ is continuous for 06 r < 1

and 06# < 2p, it can be expanded as a Fourier series in
the variable #, as follows:

tðr; #Þ ¼ a0ðrÞ
2

þ
X1
n¼1

½anðrÞ sinðn#Þ þ bnðrÞ cosðn#Þ�:

ð16Þ

By substituting Eq. (16) in Eq. (12), one obtains

1

2

d2a0
dr2

�
þ 1

r
da0
dr

�
þ
X1
n¼1

d2an
dr2

��
þ 1

r
dan
dr

� n2

r2
an

�
sinðn#Þ

þ d2bn
dr2

�
þ 1

r
dbn
dr

� n2

r2
bn

�
cosðn#Þ

�
¼ 0: ð17Þ

The integration of Eq. (17) with respect to # in the range

½0; 2p� yields

d2a0
dr2

þ 1

r
da0
dr

¼ 0: ð18Þ

The general solution of Eq. (18) is

a0ðrÞ ¼ A0 ln r þ B0; ð19Þ

where A0 and B0 are integration constants.

Since the dimensionless temperature must be finite on

the duct axis, A0 must vanish. Moreover, on account of

Eq. (14), also B0 vanishes. Thus, Eq. (19) yields

a0ðrÞ ¼ 0: ð20Þ

If Eq. (17) is multiplied by sinðm#Þ, where m is an ar-

bitrary positive integer, and then integrated with respect

to # in the range ½0; 2p�, the following equation is ob-

tained:

d2an
dr2

þ 1

r
dan
dr

� n2

r2
an ¼ 0: ð21Þ
The general solution of Eq. (21) is

anðrÞ ¼ Anrn þ Bnr�n; ð22Þ

where An and Bn are integration constants.

Since the dimensionless temperature on the duct axis

must be finite, Bn must be zero and, as a consequence,

anðrÞ ¼ anð1Þrn: ð23Þ

Similarly, by multiplying Eq. (17) by cosðm#Þ and then

integrating with respect to # in the range ½0; 2p�, one
obtains

d2bn
dr2

þ 1

r
dbn
dr

� n2

r2
bn ¼ 0: ð24Þ

The general solution of Eq. (24) which is finite for r ¼ 0

is given by

bnðrÞ ¼ bnð1Þrn: ð25Þ

The coefficients anð1Þ and bnð1Þ are determined by the

thermal boundary conditions. Eqs. (16), (20), (23) and

(25) yield

tðr; #Þ ¼
X1
n¼1

rn anð1Þ sinðn#Þ½ þ bnð1Þ cosðn#Þ�: ð26Þ

The dimensionless velocity distribution can be deter-

mined by a similar procedure. In fact, the function

uðr; #Þ is continuous for 06 r < 1 and 06# < 2p, so
that it can be expanded as a Fourier series in the variable

#, as follows:

uðr; #Þ ¼ c0ðrÞ
2

þ
X1
n¼1

cnðrÞ sinðn#Þ½ þ hnðrÞ cosðn#Þ�:

ð27Þ

By substituting Eqs. (26) and (27) in Eq. (11), one ob-

tains

1

2

d2c0
dr2

�
þ 1

r
dc0
dr

�
þ k
4
þ
X1
n¼1

d2cn
dr2

�
þ 1

r
dcn
dr

� n2

r2
cn

þ 1

4

Gr
Re

rnanð1Þ
�
sinðn#Þ þ

X1
n¼1

d2hn
dr2

�
þ 1

r
dhn
dr

� n2

r2
hn

þ 1

4

Gr
Re

rnbnð1Þ
�
cosðn#Þ ¼ 0: ð28Þ

Moreover, Eqs. (13) and (27) yield

uð1; #Þ ¼ c0ð1Þ
2

þ
X1
n¼1

cnð1Þ sinðn#Þ½ þ hnð1Þ cosðn#Þ� ¼ 0:

ð29Þ

By integrating Eqs. (28) and (29) with respect to # in the

range ½0; 2p�, one obtains

d2c0
dr2

þ 1

r
dc0
dr

þ k
2
¼ 0 ð30Þ
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and

c0ð1Þ ¼ 0: ð31Þ

The solution of Eqs. (30) and (31) which is finite for

r ¼ 0 is given by

c0ðrÞ ¼
k
8
ð1� r2Þ: ð32Þ

The value of the parameter k is determined by Eq. (15).

Indeed, Eqs. (15), (27) and (32) yieldZ 2p

0

d#

Z 1

0

dr r
k
16

ð1
(

� r2Þ þ
X1
n¼1

cnðrÞ sinðn#Þ½

þ hnðrÞ cosðn#Þ�
)

¼ p; ð33Þ

so that one obtains

k ¼ 32: ð34Þ

If one multiplies Eqs. (28) and (29) by sinðm#Þ, where m
is an arbitrary positive integer, and then integrates with

respect to # in the range ½0; 2p�, one obtains

d2cn
dr2

þ 1

r
dcn
dr

� n2

r2
cn þ

1

4

Gr
Re

anð1Þrn ¼ 0 ð35Þ

and

cnð1Þ ¼ 0: ð36Þ

The solution of Eqs. (35) and (36) which is finite for

r ¼ 0 is

cnðrÞ ¼
Gr
Re

anð1Þ
16ðnþ 1Þ ð1� r2Þrn: ð37Þ

Similarly, by multiplying Eqs. (28) and (29) by cosðm#Þ
and then integrating with respect to # in the range

½0; 2p�, one obtains

d2hn
dr2

þ 1

r
dhn
dr

� n2

r2
hn þ

1

4

Gr
Re

bnð1Þrn ¼ 0 ð38Þ

and

hnð1Þ ¼ 0: ð39Þ

The solution of Eqs. (38) and (39) which is finite for

r ¼ 0 is

hnðrÞ ¼
Gr
Re

bnð1Þ
16ðnþ 1Þ ð1� r2Þrn: ð40Þ

On account of Eqs. (27), (32), (34), (37) and (40), the

dimensionless velocity distribution is given by

uðr; #Þ ¼ uð1ÞðrÞ þ Gr
Re

uð2Þðr; #Þ; ð41Þ

where

uð1ÞðrÞ ¼ 2ð1� r2Þ; ð42Þ
uð2Þðr; #Þ ¼ 1

16
ð1� r2Þ

X1
n¼1

rn

nþ 1
½anð1Þ sinðn#Þ

þ bnð1Þ cosðn#Þ�: ð43Þ

On account of Eqs. (41)–(43), in the limit Gr=Re ! 0,

uðr; #Þ tends to uð1ÞðrÞ, i.e. the dimensionless velocity

distribution coincides with the Poiseuille dimensionless

velocity profile. Indeed, the limit Gr=Re ! 0 represents

the forced convection regime. Moreover, if one defines a

modified dimensionless velocity through the expression

u�ðr; #Þ ¼ Re
Gr

uðr; #Þ ¼ m
4gbDTR2

0

UðR; #Þ; ð44Þ

uð2Þðr; #Þ coincides with the limit of u�ðr; #Þ for

Gr=Re ! 1. This limit corresponds to the case of free

convection (purely buoyancy-driven flow).

The Fanning friction factor f is defined as

f ¼ 2sw
.0U

2
0

; ð45Þ

where the average wall shear stress sw is given by

sw ¼ � l
2p

Z 2p

0

oU
oR

				
R¼R0

d#: ð46Þ

By substituting Eq. (46) in Eq. (45), one obtains

f ¼ � m
pU 2

0

Z 2p

0

oU
oR

				
R¼R0

d#

¼ � 2

p
1

Re

Z 2p

0

ou
or

				
r¼1

d#: ð47Þ

If one integrates both sides of Eq. (11) with respect to r
and # in the whole unit circle r < 1, one is led to the

expression:

kp þ 4

Z 2p

0

ou
or

				
r¼1

d# ¼ 0: ð48Þ

Eqs. (47) and (48) yield the relation

f Re ¼ k
2
: ð49Þ

The assumption that the average wall heat flux is zero

implies that the averageNusselt number is zero aswell.On

the other hand, the local Nusselt number Nu# is given by

Nu# ¼ 2R0h#
k

¼ 2R0qw#

k½T ðR0; #Þ � Tb�
; ð50Þ

where h# is the local convection coefficient, k is the

thermal conductivity of the fluid, qw#
is the local inward

wall heat flux per unit area, and Tb is the bulk temper-

ature. By employing Eq. (8), Tb can be expressed as

Tb ¼
1

pR2
0U0

Z 2p

0

d#

Z R0

0

dRRUT

¼ DT
p

Z 2p

0

d#

Z 1

0

dr rut þ T0: ð51Þ
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If one defines the dimensionless bulk temperature,

tb ¼
Tb � T0

DT
¼ 1

p

Z 2p

0

d#

Z 1

0

dr rut ð52Þ

and employs the dimensionless quantities given by Eq.

(8), one can write the local Nusselt number as

Nu# ¼ 2

tð1; #Þ � tb

ot
or

				
r¼1

: ð53Þ

On account of Eqs. (41) and (52), the dimensionless bulk

temperature tb can be expressed as

tb ¼ tð1Þb þ Gr
Re

tð2Þb ; ð54Þ

where

tð1Þb ¼ 1

p

Z 2p

0

d#

Z 1

0

dr ruð1ÞðrÞtðr; #Þ; ð55Þ

tð2Þb ¼ 1

p

Z 2p

0

d#

Z 1

0

dr ruð2Þðr; #Þtðr; #Þ: ð56Þ

As a consequence of Eqs. (53) and (54), the inverse of

the local Nusselt number is a linear function of Gr=Re,
namely

1

Nu#
¼ Að#Þ � Gr

Re
Bð#Þ; ð57Þ

where

Að#Þ ¼ 1

2
tð1; #Þ
h

� tð1Þb

i ot
or

				
r¼1

� ��1

; ð58Þ

Bð#Þ ¼ 1

2
tð2Þb

ot
or

				
r¼1

� ��1

: ð59Þ

To summarize, the solution obtained in this section

shows that the buoyancy forces do not affect either the

dimensionless temperature distribution, or the dimen-

sionless pressure drop k, or the Fanning friction factor

f . On the contrary, the dimensionless velocity distribu-

tion and the local Nusselt number depend on Gr=Re.
4. Sinusoidal wall temperature distribution

In this section, the general solution obtained above is

applied to the case of a duct with a sinusoidal wall

temperature distribution having a period 2p=q, where q
is an arbitrary positive integer.

The thermal boundary condition can be expressed as

T ðR0; #;X Þ ¼ sinðq#ÞDT þ Tw; ð60Þ

where the constant Tw is the mean wall temperature. On

account of Eq. (3), it is easily proved that the boundary

condition expressed by Eq. (60) yields oT=oX ¼ 0. In-
deed, if one differentiates both sides of Eq. (3) with re-

spect to X , one obtains

oT
oX

¼ dT0
dX

þ 1

.0gb
d2P
dX 2

: ð61Þ

Obviously, the right hand side of Eq. (61) does not de-

pend on R and #, so that the value of oT=oX at every

inner position coincides with the value at the wall. Since

the wall temperature is independent of X , one concludes
that oT=oX ¼ 0 for every value of R and #.

By introducing the dimensionless quantity

g ¼ Tw � T0
DT

ð62Þ

and employing Eq. (8), one can write Eq. (60) in the

dimensionless form

tð1; #Þ ¼ sinðq#Þ þ g: ð63Þ

Eqs. (26) and (63) yield

g ¼ 0; anð1Þ ¼ dq;n; bnð1Þ ¼ 0; ð64Þ

where dq;n is Kronecker�s delta.
On account of Eqs. (26) and (64), the dimensionless

temperature distribution is

tðr; #Þ ¼ rq sinðq#Þ; ð65Þ

whereas, as a consequence of Eqs. (43) and (64), the

buoyancy-induced dimensionless velocity term uð2Þ is

given by

uð2Þðr; #Þ ¼ 1

16
ð1� r2Þ rq

qþ 1
sinðq#Þ: ð66Þ

In Fig. 2, the function uð2Þðr; #Þ is plotted versus # for

r ¼ 0:5 and for three values of q. The figure shows that
uð2Þðr; #Þ is positive if and only if 2mp=q <
# < ð2mþ 1Þp=q, where m is any non-negative integer.

Therefore, Eq. (41) implies that, if Gr=Re > 0, the di-

mensionless velocity uðr; #Þ is greater than uð1ÞðrÞ for

2mp=q < # < ð2mþ 1Þp=q and lower elsewhere. More-

over, Fig. 2 shows that the effect of buoyancy on the

dimensionless velocity distribution becomes less impor-

tant as q increases.

It can be easily verified that, due to the special sym-

metry of the thermal boundary condition,

tð1Þb ¼ 0 ð67Þ

for every value of the parameter q. On the other hand,

the term tð2Þb is given by

tð2Þb ¼ 1

32ðqþ 1Þ2ðqþ 2Þ
: ð68Þ

It is easily shown that, for every q, there exists a positive
real number ðGr=ReÞFR such that flow reversal occurs for

upward flow when Gr=Re > ðGr=ReÞFR and for down-
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Fig. 4. Dimensionless velocity distribution for q ¼ 2 and
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Fig. 2. Buoyancy-induced dimensionless velocity term uð2Þ as a
function of #, for r ¼ 0:5 and for three values of q.
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ward flow when Gr=Re < �ðGr=ReÞFR. Indeed, for

Gr=Re ¼ ðGr=ReÞFR, the first derivative of uðr; #Þ, eval-
uated for r ¼ 1 and # ¼ 3p=ð2qÞ, vanishes. One obtains

Gr
Re

� �
FR

¼ � duð1Þ

dr

				
r¼1

ouð2Þ

or

				
r¼1;#¼3p=ð2qÞ

" #�1
¼ 32ðqþ 1Þ:

ð69Þ

In Figs. 3–5 the dimensionless velocity distribution

uðr; #Þ is plotted for q ¼ 1 and Gr=Re ¼ 200, q ¼ 2 and

Gr=Re ¼ 400, q ¼ 4 and Gr=Re ¼ 600, respectively. The

figures show that, for these values of q and Gr=Re,
strong deformations of the Poiseuille dimensionless-

velocity distribution occur. Namely, values of u higher

than 2 can take place in the warmer parts of the tube,

while negative values of u are present close to the cooler

parts of the wall (flow reversal).
0
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u
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0.5

0
0.5

1
1

0.5
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ϑ

Fig. 3. Dimensionless velocity distribution for q ¼ 1 and

Gr=Re ¼ 200.
Eqs. (53), (65), (67) and (68) lead to the following

expression of the local Nusselt number

Nu# ¼ 64qðqþ 1Þ2ðqþ 2Þ sinðq#Þ
32ðqþ 1Þ2ðqþ 2Þ sinðq#Þ � Gr=Re

: ð70Þ

Therefore, singularities of Nu# may occur if Gr=Re is

such that

�32ðqþ 1Þ2ðqþ 2Þ < Gr
Re

< 32ðqþ 1Þ2ðqþ 2Þ: ð71Þ

These singularities occur for

# ¼ 1

q
arcsin

Gr=Re

32ðqþ 1Þ2ðqþ 2Þ

" #
þ 2mp

q
ð72Þ

and for

# ¼ p
q
� 1

q
arcsin

Gr=Re

32ðqþ 1Þ2ðqþ 2Þ

" #
þ 2mp

q
; ð73Þ

where m is any non-negative integer.
5. External convection with two environments

As a second example, let us consider a duct subjected

to an external convection heat transfer with two envi-

ronments having different reference temperatures, T1 and
T2. Moreover, let us assume that the external convection

coefficient he is uniform on the whole duct wall and that

T1 > T2. This thermal boundary condition is represented

in Fig. 6 and can be expressed as
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1

u

Fig. 5. Dimensionless velocity distribution for q ¼ 4 and Gr=Re ¼ 600.
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Fig. 6. External convection heat transfer.
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� oT
oR

				
R¼R0

¼ he
k
½T ðR0; #;X Þ � F ð#ÞDT � Tm�; ð74Þ

where

F ð#Þ ¼ þ1; for 0 < # < p;

F ð#Þ ¼ �1; for p < # < 2p
ð75Þ

and

DT ¼ T1 � T2
2

; Tm ¼ T1 þ T2
2

: ð76Þ

As it is proved in Appendix A, the boundary condition

expressed by Eqs. (74)–(76) yields oT=oX ¼ 0. Then, Eq.

(74) can be rewritten in the dimensionless form
� ot
or

				
r¼1

¼ Bi½tð1; #Þ � F ð#Þ�; ð77Þ

where the Biot number Bi is given by

Bi ¼ heR0

k
: ð78Þ

On account of Eq. (77), the limit Bi ! 1 corresponds to

tð1; #Þ ! F ð#Þ. In this limit, which is attained when he
tends to infinity, one recovers the case of a piecewise

uniform wall temperature.

On account of Eqs. (26) and (77), by employing the

orthogonality of sine and cosine functions, one obtains

a2nð1Þ ¼ 0;

a2n�1ð1Þ ¼
4Bi

pð2n� 1Þð2n� 1þ BiÞ ; bnð1Þ ¼ 0 ð79Þ

for every positive integer n.
To summarize, the dimensionless temperature tðr; #Þ

and the dimensionless velocity term uð2Þðr; #Þ can be

expressed as

tðr; #Þ ¼ 4Bi
p

X1
n¼1

r2n�1

ð2n� 1Þð2n� 1þ BiÞ sin½ð2n� 1Þ#�;

ð80Þ

uð2Þðr; #Þ ¼ Bi 1� r2ð Þ
8p

X1
n¼1

r2n�1

nð2n� 1Þð2n� 1þ BiÞ

� sin½ð2n� 1Þ#�: ð81Þ

In Fig. 7, the dimensionless temperature distribution

tðr; #Þ, evaluated for r ¼ 1 and for some values of Bi, is
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Fig. 9. Buoyancy-induced dimensionless velocity term uð2Þ as a
function of #, for r ¼ 0:5.
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plotted. This figure shows that, for high values of Bi, the
dimensionless wall temperature becomes quite similar to

a piecewise uniform function of #. On the other hand, in
Fig. 8, plots of tðr; #Þ on the vertical plane defined by the
relation # ¼ p=2, 3p=2 are reported for some values of

Bi.
In Fig. 9, the dimensionless velocity term uð2Þðr; #Þ is

plotted as a function of #, for r ¼ 0:5 and for some

values of Bi. In Fig. 10, plots of uð2Þðr; #Þ on the vertical

plane defined by the relation # ¼ p=2, 3p=2 are repre-

sented for some values of Bi. Figs. 9 and 10 show that

the effect of buoyancy on the velocity distribution be-

comes more important when the Biot number increases.

As in the case of a sinusoidal wall temperature, the

symmetry of the thermal boundary condition implies

that

tð1Þb ¼ 0; ð82Þ

for every value of the parameter Bi. On the other hand,

from Eqs. (56), (80) and (81) one obtains
1 0.5 0 0.5 1
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0
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r

ϑ = π/2ϑ = 3π/2

Bi = 0.3

Bi = 1

Bi = 3

Bi = 100

Fig. 8. Dimensionless temperature distribution as a function of

r, for # ¼ p=2, 3p=2.
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Fig. 10. Buoyancy-induced dimensionless velocity term uð2Þ as a
function of r, for # ¼ p=2, 3p=2.
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Fig. 7. Dimensionless wall temperature distribution as a func-

tion of #, for some values of Bi.
tð2Þb ¼ Bi2

8p2

X1
n¼1

1

n2ð2n� 1Þ2ð2n� 1þ BiÞ2ð2nþ 1Þ
: ð83Þ

The conditions for the onset of flow reversal can be

obtained by a method similar to that employed in the

case of a sinusoidal wall temperature distribution, dis-

cussed in the preceding section. For every Bi, there exists
a positive real number ðGr=ReÞFR such that flow reversal

occurs for Gr=Re > ðGr=ReÞFR and for Gr=Re <
�ðGr=ReÞFR. Indeed, for Gr=Re ¼ ðGr=ReÞFR, the first

derivative of uðr; #Þ, evaluated for r ¼ 1 and # ¼ 3p=2,
vanishes. One obtains

Gr
Re

� �
FR

¼ � duð1Þ

dr

				
r¼1

ouð2Þ

or

				
r¼1;#¼3p=2

 !�1

¼ 16p
Bi

X1
n¼1

ð�1Þnþ1

nð2n� 1Þð2n� 1þ BiÞ

" #�1
: ð84Þ

In Table 1, the values of tð2Þb and of ðGr=ReÞFR are re-

ported for a wide range of Biot numbers. This table

shows that tð2Þb is an increasing function of Bi, while
ðGr=ReÞFR is a decreasing function of Bi.



Table 1

Values of tð2Þb , ðGr=ReÞFR and ðGr=ReÞsing
Bi tð2Þb ðGr=ReÞFR ðGr=ReÞsing
0.01 4.14666� 10�7 5.32166� 103 2.78304� 104

0.02 1.62634� 10�6 2.68799� 103 1.40446� 104

0.03 3.58866� 10�6 1.81011� 103 9.44922� 103

0.04 6.25790� 10�6 1.37118� 103 7.15149� 103

0.05 9.59286� 10�6 1.10782� 103 5.77282� 103

0.06 1.35547� 10�5 9.32249� 102 4.85367� 103

0.07 1.81066� 10�5 8.06846� 102 4.19710� 103

0.08 2.32142� 10�5 7.12797� 102 3.70466� 103

0.09 2.88446� 10�5 6.39649� 102 3.32162� 103

0.1 3.49670� 10�5 5.81133� 102 3.01517� 103

0.2 1.17558� 10�4 3.17863� 102 1.63565� 103

0.3 2.25436� 10�4 2.30165� 102 1.17524� 103

0.4 3.45655� 10�4 1.86356� 102 9.44644� 102

0.5 4.70592� 10�4 1.60101� 102 8.06011� 102

1.0 1.06009� 10�3 1.07770� 102 5.27062� 102

2.0 1.88835� 10�3 81.9049 3.84868� 102

3.0 2.39365� 10�3 73.4337 3.36164� 102

4.0 2.72678� 10�3 69.2596 3.11296� 102

5.0 2.96166� 10�3 66.7847 2.96134� 102

10.0 3.53510� 10�3 61.9309 2.65048� 102

20.0 3.88899� 10�3 59.5709 2.48984� 102

50.0 4.12912� 10�3 58.1836 2.39130� 102

100.0 4.21455� 10�3 57.7267 2.35822� 102

ϑ0

1

1

0.5

0.5
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In Figs. 11 and 12, the dimensionless velocity distri-

bution uðr; #Þ is represented for Gr=Re ¼ 300, respec-

tively for Bi ¼ 0:3 and Bi ¼ 100. Both figures show that,

for these values of Bi and Gr=Re, a considerable dis-

crepancy with respect to the Poiseuille dimensionless-

velocity distribution occurs. The deformation of the
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Fig. 11. Dimensionless velocity distribution for Bi ¼ 0:3 and

Gr=Re ¼ 300.
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1
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Fig. 12. Dimensionless velocity distribution for Bi ¼ 100 and

Gr=Re ¼ 300.
velocity profile is sharper for Bi ¼ 100 (Fig. 12) than for

Bi ¼ 0:3 (Fig. 11) and the region of flow reversal is

wider.

On account of Eqs. (80), (82) and (83), the functions

A and B defined in Section 3 and given by Eqs. (58) and

(59), have the following expressions:
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Fig. 14. Plots of B versus #, for different values of Bi.
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Fig. 15. Plots of the ratio A=B versus #, for different values of

Bi.
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Að#Þ ¼ 1

2

X1
n¼1

sin ð2n� 1Þ#½ �
ð2n� 1Þð2n� 1þ BiÞ

( )

�
X1
n¼1

sin ð2n� 1Þ#½ �
ð2n� 1þ BiÞ

( )�1

; ð85Þ

Bð#Þ ¼ Bi
64p

X1
n¼1

1

n2ð2n� 1Þ2ð2n� 1þ BiÞ2ð2nþ 1Þ

" #

�
X1
n¼1

sin ð2n� 1Þ#½ �
ð2n� 1þ BiÞ

( )�1

: ð86Þ

It can be easily verified that, for any given value of Bi,
Að#Þ and Bð#Þ satisfy the following conditions:

Að#Þ ¼ Aðp � #Þ; Að#Þ ¼ Að2p � #Þ; ð87Þ

Bð#Þ ¼ Bðp � #Þ; Bð#Þ ¼ �Bð2p � #Þ: ð88Þ

On account of Eqs. (57), (87) and (88), Nu# is a sym-

metric function of # with respect to # ¼ p=2. Moreover,

for Gr=Re ¼ 0 (forced convection), Nu# is also a sym-

metric function of # with respect to # ¼ p. The latter

symmetry does not occur for mixed convection

(Gr=Re 6¼ 0). In Figs. 13 and 14, plots of A and B as

functions of # are shown in the range ½0; p=2�, for three
different values of Bi. Both Að#Þ and Bð#Þ are increasing
functions of # in the range ½0; p=2�. While Að0Þ ¼ 0, the

value of Bð0Þ depends on the Biot number.

Eq. (57) reveals that the local Nusselt number is

singular when Að#Þ=Bð#Þ ¼ Gr=Re. In Fig. 15, the ratio

A=B as a function of # is shown in the range ½0; p=2�, for
three different values of Bi. In this range, the ratio A=B
is an increasing function of # and has its maximum

for # ¼ p=2. Therefore, by employing Eqs. (57), (87)

and (88), one can infer that Nu# presents singularities

only if, for a given Bi, the absolute value of Gr=Re is

lower than Aðp=2Þ=Bðp=2Þ. In the following, the ratio

Aðp=2Þ=Bðp=2Þ will be denoted as ðGr=ReÞsing. A quali-
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Fig. 13. Plots of A versus #, for different values of Bi.
tative representation of the singularities of Nu# can be

found in Fig. 16. On account of Eqs. (87) and (88), it is

easily shown that Að#Þ=Bð#Þ is symmetric with respect to
# ¼ p=2 and antisymmetric with respect to # ¼ p.
Therefore, for a given value of Bi and for a positive

value of Gr=Re such that Gr=Re < ðGr=ReÞsing, Nu#
presents two singularities: one in # ¼ #singð#sing < p=2Þ
and the other in # ¼ p � #sing. The value of #sing can be

determined by finding the roots of the following equa-

tion:

Að#Þ
Bð#Þ ¼

Gr
Re

: ð89Þ

Obviously, for a given value of Bi and for a negative

value of Gr=Re such that Gr=Re > �ðGr=ReÞsing, Nu#
presents two singularities: one in # ¼ #singðp <
#sing < 3p=2Þ and the other in # ¼ 2p � #sing. Also in this

case, the value of #sing can be determined by finding the

roots of Eq. (89). In the last column of Table 1, values of

ðGr=ReÞsing are reported for several Biot numbers. This

table shows that ðGr=ReÞsing is a decreasing function of

Bi.
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Fig. 16. Existence of singularities of Nu#, for a given value of Bi.
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6. Conclusions

The combined forced and free convection in a

vertical circular duct has been analyzed by employing

Fourier series expansions of the dimensionless tem-

perature and velocity fields. Non-axisymmetric thermal

boundary conditions have been considered, such that

the fluid temperature is independent of the axial co-

ordinate. Two special cases have been investigated: a

duct subjected to a sinusoidal wall temperature dis-

tribution; a duct subjected to external convection with

two environments having different reference tempera-

tures. The most important results obtained are the

following.

• For an arbitrary thermal boundary condition which

does not yield a net fluid heating, buoyancy forces

do not affect the dimensionless temperature distribu-

tion, the dimensionless pressure drop parameter and

the Fanning friction factor. Thus, these quantities are

independent of the ratio Gr=Re. On the other hand,

the inverse of the local Nusselt number is a linear

function of Gr=Re.
• In the first example (sinusoidal wall temperature dis-

tribution), the dimensionless velocity distribution de-

pends both on Gr=Re and on the angular frequency q.
In the second example (external convection with two

environments), the dimensionless velocity distribu-
tion depends both on Gr=Re and on the Biot number

Bi. In both examples, it has been shown that, either

for every q (first example) or for every Bi (second ex-

ample), there exists a positive real number ðGr=ReÞFR
such that flow reversal occurs for upward flow

when Gr=Re > ðGr=ReÞFR and for downward flow

when Gr=Re < �ðGr=ReÞFR. The threshold value,

ðGr=ReÞFR, has been determined as a function of q
in the first example and of Bi in the second example.

In both examples, the local Nusselt number presents

singularities for sufficiently small values of jGr=Rej.
Appendix A

In the case of a steady parallel flow, the energy bal-

ance equation can be written as

U
oT
oX

¼ ar2T ; ðA:1Þ

where a is the fluid thermal diffusivity. If the duct is

subjected to external convection with an environment

having a reference temperature Tf which depends on the

angular coordinate #, the thermal boundary condition

can be written as

�k
oT
oR

				
R¼R0

¼ he½T ðR0; #;X Þ � Tf ð#Þ�; ðA:2Þ
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where the external convection coefficient he is assumed
to be uniform on the whole duct wall.

It will be shown that the thermal boundary condition

defined by (A.2) yields oT=oX ¼ 0, provided that the

fully developed region is considered.

The mean value of an arbitrary quantity G over a

duct section is defined as

hGi ¼ 1

pR2
0

Z
S
GdS ¼ 1

pR2
0

Z 2p

0

d#

Z R0

0

dRRG; ðA:3Þ

where S is the duct section. Since the mean value of the

fluid velocity U is given by

hUi ¼ U0 ðA:4Þ

and since oT=oX is uniform on the duct section, as

shown by Eq. (61), the mean value of the left hand side

of Eq. (A.1) can be written as

U
oT
oX

� �
¼ U0

oT
oX

: ðA:5Þ

The mean value of the right hand side of Eq. (A.1) is

given by

har2T i ¼ ahr2T i ¼ a
pR2

0

Z
S
r � rT dS

¼ a
pR2

0

Z
oS
rT � Rdl

¼ a
pR2

0

Z 2p

0

oT
oR

				
R¼R0

R0 d#

¼ a
pR0

Z 2p

0

oT
oR

				
R¼R0

d#; ðA:6Þ

where oS is the boundary of S and R is the radial unit

vector. Moreover, by employing the thermal boundary

condition given by Eq. (A.2), one obtains

a
pR0

Z 2p

0

oT
oR

				
R¼R0

d# ¼ � ahe
kpR0

Z 2p

0

T ðR0; #;X Þd#
�

�
Z 2p

0

Tf ð#Þd#
�

¼ � 2ahe
kR0

½Tw � Tm�; ðA:7Þ

where Tw is the mean wall temperature and Tm is the

mean value of Tf ð#Þ. On account of Eqs. (A.5)–(A.7),

the energy balance equation (A.1) yields

U0

oT
oX

¼ � 2ahe
kR0

½Tw � Tm�: ðA:8Þ

If one differentiates both sides of Eq. (A.8) with respect

to X , one obtains

U0

o2T
oX 2

¼ � 2ahe
kR0

dTw
dX

: ðA:9Þ
Since oT=oX is uniform on a duct section, the following

equality holds:

dTw
dX

¼ oT
oX

: ðA:10Þ

By substituting Eq. (A.10) in Eq. (A.9), one is led to the

differential equation

U0

o2T
oX 2

¼ � 2ahe
kR0

oT
oX

: ðA:11Þ

Let us define

oT
oX

¼ HðX Þ; ðA:12Þ

so that Eq. (A.11) yields

U0

dHðX Þ
dX

¼ � 2ahe
kR0

HðX Þ: ðA:13Þ

The solution of Eq. (A.13) is given by

HðX Þ ¼ HðX0Þ exp
�
� 2ahe
kR0U0

ðX � X0Þ
�
; ðA:14Þ

where X0 is an arbitrary axial position. Therefore, Eq.

(A.14) implies that HðX Þ ¼ oT=oX undergoes an expo-

nential decay in the direction of the mean flow. As a

consequence, in the fully developed region, oT=oX tends

to zero.
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